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Abstract

We have developed a new two and a half dimensional electromagnetic particle code with adaptive mesh refinement
(AMR) technique in an effort to give a self-consistent description of the dynamic change of the plasma sheet in association
with magnetic reconnection, which includes multi-scale processes from the electron scale to the magnetohydrodynamic
scale. The AMR technique subdivides and removes cells dynamically in accordance with a refinement criterion and it is
quite effective to achieve high-resolution simulations of phenomena that locally include micro-scale processes. Since the
number of particles per cell decreases in the subdivided cells and a numerical noise increases, we subdivide not only cells
but also particles therein and control the number of particles per cell. Our code is checked against several well-known pro-
cesses such as the Landau damping of the Langmuir waves and we show that the AMR technique and particle splitting
algorithm are successfully applied to the conventional particle codes. We have also examined the nonlinear evolution of
the Harris-type current sheet and realized basically the same properties as those in other full particle simulations. We show
that the numbers of cells and particles are greatly reduced so that the time to complete the simulation is significantly short-
ened in our AMR code, which enables us to conduct large-scale simulations on the current sheet evolution.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic reconnection plays an important role in a fast conversion process of the magnetic energy to
plasma kinetic and thermal energy. It occurs in the accretion disks of astrophysical bodies, solar flares, and
the Earth magnetosphere, so that it is a ubiquitous phenomenon in the universe.

In the Earth magnetosphere, magnetic reconnection facilitates the entry of particles and energy from the
solar wind into the magnetosphere at the day-side magnetopause. It is also believed to affect the dynamics
of magnetospheric substorms by changing the current sheet structure and the configuration of magnetic field
lines in the Earth magnetotail. In a reconnection process, the ideal magnetohydrodynamic (MHD) condition
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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breaks down in the diffusion region arising near the X-line, where dissipation processes of the magnetic field
are dominant. In a sufficiently collisional plasma, the resistive MHD theory (e.g. [24,25,33]) is valid for
describing the diffusion region by parameterizing collisional effects. However in a region where the classical
collision rate is very small such as in the magnetosphere, the Sweet–Parker diffusion region is elongated
and the reconnection rate is impractically low [36]. Actually in such a collisionless plasma, the diffusion region
develops a two-scale structure associated with the electron and ion scales, that is, the electron inertial length ke

and the ion inertial length ki, respectively. Within a distance from the X-line of the order of ki, the ions are
easily unmagnetized because they have large gyroradii compared with the scale size ki. We call this region
the ion diffusion region. On the other hand, even closer to the X-line the electrons also decouple from the
ambient magnetic field. This region, which is called the electron diffusion region, has scale size of ke. Inside
the electron diffusion region, where the electrons are unmagnetized and strongly accelerated away from the
X-line, the nongyrotropic electron pressure can give rise to the reconnection electric field [15], which implies
that kinetic effects of the electrons are essential to dissipation mechanisms of the magnetic field in the electron
diffusion region. Outside the electron diffusion region but inside the ion diffusion region, the ion motion decou-
ples from that of the still frozen-in electrons. This difference in motion produces currents, so-called Hall cur-
rent system, in the vicinity of the X-line [31]. It is suggested that the inclusion of the Hall term realizes much
faster reconnection rate than that in the case of a resistive MHD [7, and references therein]. Thus a full particle
simulation, in which both electrons and ions are treated as particles, is very effective to describe the dynamics
in the vicinity of the X-line.

Most full particle codes employ particle-in-cell (PIC) technique, in which the current and charge densities
are accumulated on a spatial grid from the particle data and the forces on the particles are interpolated from
the adjacent spatial grids. Though the full particle model using PIC technique is conceptually very simple and
one does not introduce any approximation in the basic laws of mechanics and electromagnetism, the restric-
tions on the grid spacing are very severe and one must set it to be as small as the electron Debye length kDe,
which is the order of 103 m in the central current sheet of the magnetotail. On the other hand, magnetic recon-
nection changes the current sheet structure dynamically in MHD scale of the order of 109 m. Hence, for mod-
elling of the magnetosphere including the nonlinear evolution of magnetic reconnection, the spatial dynamic
range is required to be 106. Furthermore, since the electromagnetic PIC code requires at least dozens of par-
ticles per cell to suppress a numerical noise, the number of particles for each species is over 1013 even in the
two-dimensional system. However, a simulation with 1012 cells and 1013 particles in the two-dimensional sys-
tem is unrealistic today due to the limitation of computer resources. Usual compromise is to use low mass
ratio of the ion to the electron, although too low mass ratio allows a spurious wave mode to grow [8]. How-
ever, even when the mass ratio is 100 instead of 1834 that is realistic, the required numbers of cells and par-
ticles are 1010 and 1011, respectively. It is still difficult to conduct such a simulation with currently available
computer resources.

In the Earth magnetotail, the number density of plasma is confirmed to be much higher in the central
plasma sheet than in the lobe region according to the observations with satellites (e.g. [2,3]), so that the elec-
tron Debye length is the smallest in the central plasma sheet. Therefore, the spatial resolution required for the
numerical stability is much higher in the central plasma sheet than in the lobe region. Since the diffusion region
appears also in the central plasma sheet, the spatial resolution should be high there also in terms of the phys-
ical perspective. In conventional full particle simulations of magnetic reconnection (e.g. [15,16,29,27,34]), the
spatial resolution has been uniform in the whole simulation area in accordance with that required in the cen-
tral plasma sheet. Thus, in the lobe region which occupies most of the simulation area, the spatial resolution
has been unnecessarily high. The adaptive mesh refinement (AMR) technique is beneficial to reducing the
number of cells and saving computer resources by introducing finer cells hierarchically in only the regions,
such as the central plasma sheet and the diffusion region, where higher spatial resolution is required (see Sec-
tion 2.1).

A block structured adaptive method was extensively developed by Berger and the co-workers [4,5] to solve
partial differential equations on a hierarchy of nested cells covering high-resolution regions. An introduction of
the AMR technique to a particle code has been examined for the application to the N-body simulations describ-
ing cosmological matter such as the formation and structure of galaxies [12,18,20,21,32,35,39,40]. In the N-
body codes, the mass density is assigned to the neighboring grids using the cloud-in-cell (CIC) algorithm, which
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is equivalent to the PIC algorithm for orthogonal coordinates [6]. In the early N-body codes with the AMR
technique [12,18,32,39], they adopted nested cells as like as Berger and Oliger [5] to increase force resolution,
so that the refined regions were give in rectangular shape. Though the rectangular refinements facilitate the data
structure, they are not suitable for models including the complicated structures that are difficult to cover effi-
ciently with rectangular regions. On the other hand, a tree structured cells have been also used in order to
increase the spatial resolution locally and achieve a high dynamical range simulation [1,9,13]. Kravtsov et al.
[21] developed the adaptive refinement tree (ART) code, in which the tree structured cells are connected with
each other on all hierarchical levels. The ART code subdivides all cells that satisfy a refinement criterion regard-
less of the shape of the refined regions, so that it enables us to achieve an efficient refinement to cover a com-
plicate structure. Although their code is adaptive only in space, recently developed codes [20,35,40] are adaptive
not only in space but also in time. Plasma simulations using an electrostatic PIC code with the AMR have been
recently examined in order to describe the ion beam transport in a heavy ion fusion [37].

In this paper, we present a newly developed two and a half dimensional electromagnetic full particle code
with the AMR technique. In this code we deal with two species of charged particles, that is, ions (protons) and
electrons. The current and charge densities are assigned onto the hierarchical cell corners using the PIC algo-
rithm, which process is similar to the mass density assignment by the CIC algorithm used in the N-body codes.
The electromagnetic field is calculated via Maxwell�s equations, unlike the Poisson equation used to derive the
gravitational field in the N-body codes. The particles (superparticles) are also subdivided in the refined regions
in order to suppress the numerical noise that arises due to the decrease in the number of the particles per cell.
In the following sections, we describe the details of our code (Section 2), and discuss the results of test sim-
ulations and application to the current sheet evolution (Section 3). Finally, we summarize and conclude this
work in Section 4.

2. Description of the code

2.1. Data structure and cell generator

In order to increase a spatial resolution efficiently, the AMR technique subdivides only cells that satisfy a
refinement criterion and add data sets for finer cells hierarchically onto the uniform base cells that cover the
entire simulation area. If a base cell is refined, it has four child cells that have half the size of the base cell.
These child cells can be also refined in turn and finer cells are generated, and so on. In our code, a refinement
level L in the hierarchy is defined by using the cell size of the level (DL) as L � log2ðly=DLÞ, where ly is the ver-
tical size of the two-dimensional simulation area. We use only cells with integer level.

The data structure in our approach is completely different from that used in the conventional electromag-
netic particle codes. Cells are treated as independent units organized in refinement trees rather than elements
of arrays, so that one can build a very flexible cell hierarchy that can be easily modified. The hierarchical cell
structure in our code is basically the same as the fully threaded tree structure developed by Khokhlov [19], and
supported by a set of pointers as shown in Fig. 1. Each cell is needed to have information of the parent, child,
and neighboring cells. Since a cell has four child cells, if any, we group these four cells together in order to save
memory for pointers and facilitate parallel computing. We call this group an oct (after an octet in the case of a
cubic cell). Each cell has a pointer to the child oct (OctCh). Each oct has pointers to the parent cell (iPr), the
parent cells of the neighboring octs (iNb), and a representative particle belonging to the oct (inp). Note that
each particle belongs to the finest oct in which the particle is located. Each particle has a pointer to the neigh-
boring particle in the same oct (pnb), which leads to a beaded structure of particles as described in Fig. 1 [35].
In addition to these pointers, each oct has information of the level of cells included therein, the integral posi-
tion at a corner of the oct, and the number of particles in the oct. The level of a cell is very useful information
to efficiently sweep through a level. The position of a oct and the number of particles included in the oct are
helpful to construct the beaded structure of particles. Each cell also has physical data at a corner of the cell;
charge density, current density, and electromagnetic fields.

A refinement process subdivides a cell that satisfies a refinement criterion and generates four child cells. In
electromagnetic particle codes, one of the refinement criteria should be defined by the local electron Debye
length in terms of the numerical stability. However, additional criteria can be introduced in accordance with



Level L

Oct

Cell Cell Cell Cell

Oct

Oct Oct

Cell Cell Cell Cell

iPr
OctCh

iPr
OctCh

iNb
iNb

iNb

inpinpinpinp

pnb
Particles

Level L+1

Fig. 1. Hierarchical data structure in our code. One-dimensional structure is shown for simplicity. The pointers that each cell or oct has
are basically the same as those in the tree structure developed by Khokhlov [19], but we additionally give two pointers, inp directed to a
representative superparticle from each oct, and pnb directed from each particle to the neighboring particle in the same oct.
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physics that is incorporated in the code. An example in the case of nonlinear evolution of the plasma sheet is
shown in Section 3.3. When the parent cell is refined, we check if there exist the surrounding eight cells having
the same level as the parent cell. Even if one of eight cells are absent, no splitting is implemented and no child
cells are created. Thus, in our tree structure, no neighboring cells have level difference greater than one, which
assures that there are no sharp gradients on the boundaries of the refined regions.

The refinement procedure is similar to that in [21]. The process is started from the base level cells and recur-
sively proceeds to reach the dynamic range level cells at each time step. First, we put flags to cells that satisfy
refinement criteria. At this point, no cells are subdivided. In order to smooth the marked region, we next put
flags to the eight cells surrounding each cell flagged firstly. Furthermore, we construct buffer region surround-
ing the refined region by giving other flags to cells that surround the originally flagged cells but have no flags
for the refinement. The buffer regions are used to set boundary conditions for calculating the electromagnetic
fields in the refined region as mentioned in Section 2.4. After that, we search again the whole cells with the
target level. If a cell has a flag but has no child cells, the cell is subdivided and half-sized refined or buffer cells
are generated. If a cell has no flag but has child cells, the child cells are removed from the hierarchical struc-
ture. If a cell has both a flag and child cells, or has neither a flag nor child cells, no operation is conducted for
the cell. Thus the refinement operation is performed only to the cells that have any changes in terms of the
refinement criteria at each time step, so that the refinement procedure is quickly completed.

The beaded structures of particles must be rearranged in association with the refinement procedure and the
movement of particles. When a new oct is created, the particles located in the parent cell are removed from the
beaded structure in the parent oct and reconnected to that in the child oct. On the other hand, when an oct is
removed from the tree structure, the beaded structure is reconnected to that in the parent oct. Furthermore,
particles moving away across oct boundaries are removed from the beaded structure in the oct and recon-
nected to those in new octs in which they are located.

2.2. Particle splitting and coalescence

One of the main problems in developing the electromagnetic PIC codes using the AMR technique is
decrease in the number of particles per cell in the refined regions [11]. Especially, in the vicinity of the X-line
formed in association with magnetic reconnection, spatially high-resolution simulations are required because
the kinetic effects of electrons are expected to be important. However, the number density of plasma in such a
region is low due to inflow of the tenuous plasma in the lobe region, so that the number of particles per cell is
decreased and the numerical noise is increased.

In order to solve the problem, we subdivide particles (superparticles) residing in the subdivided cells and
control the number of particles per cell. We use the particle splitting-coalescence algorithm developed by
Lapenta [23]. The processes should conserve the following quantities:
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(1) the moments on each grid, that is, the charge and current densities,
(2) the total charge and mass of particles,
(3) the total momentum and energy of particles,
(4) the distribution function of particles.

In the splitting algorithm in the two-dimensional system, a particle with charge q0, mass m0, position x0,
and velocity v0 can be replaced by four particles. The new particles labeled by p (p = 1,2,3,4) have charges
qp = q0/4, masses mp = m0/4, and velocities vp = v0. The new particles are located at x1,2 = x0 ± Dr,
x3,4 = x0, y1,2 = y0, y3,4 = y0 ± Dr (see Fig. 2(a)). Here, Dr should be chosen so as to suppress the local fluc-
tuation of the spatial particle distribution, which can arise from the particle splitting, as much as possible. In
this context, Dr ¼ DL=

ffiffiffiffiffiffi
N p

p
is considered to be a natural choice in the two-dimensional case, where Np is the

number of particles in the cell with the size DL. This algorithm exactly conserve the above mentioned four
quantities, if the new particles are all located in the same cell as the old particle. If one of the new particles
is expected to be placed in a neighboring cell, the splitting is not implemented.

We also conduct the coalescence of particles. This algorithm is also simple. In our code, we choose two par-
ticles labeled by 1 and 2 that are located in the same cell and have same charges q1 = q2 = q (that is, same masses
m1 = m2 = m), and proximate velocities v1 and v2 which satisfy |v2 � v1| < avth, where vth is the thermal velocity
defined by vth �

ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
(T is temperature), and a is a small value which is set as a = 0.1 in our code unless

otherwise mentioned. The new particle labeled 0 has charge q0 = 2q, mass m0 = 2m, position x0 = (x1 + x2)/
2, and velocity v0 = (v1 + v2)/2 (see Fig. 2(b)). However, the coalescence process does not exactly conserve
the total energy of particles and the distribution function [23]. The difference in kinetic energy of particles
between before and after the coalescence is found to be under 25a2 percent of mv2

th, so that the error that arises
during one coalescence is within 0.5% of the thermal energy of particles with mass m in our code (a = 0.1).
Nonetheless, we hardly conduct the particle coalescence (usually once in a few hundred time steps), and never
choose the particles in the most refined cells to avoid the numerical errors in physically important regions.

2.3. Particle and force weighting within the hierarchical cell

We use the standard PIC algorithm to accumulate the charge and current densities onto each cell corner
and interpolate the force on a cell corner to a particle. The charge and current that a particle located in a cell
carries are assigned to the four cell corners in the following forms:
Fig. 2.
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Particle splitting and coalescence method in the two-dimensional system. The splitting process in (a) subdivides a particle labeled 0
ur particles numbered 1–4, while the coalescence process in (b) joins two particles numbered 1 and 2 and generates a new particle
0 at the midpoint.
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where qsj, xn
sj, and vn

sj are the charge, position, and velocity of jth particle of species s (ion and electron) at time
nDt (Dt is a time interval and equivalent for all particles), respectively, and Xl,m represents the spatial position
(lDL,mDL) of a cell corner. SL(x) is the shape function and defined by using the cell size DL on each refinement
level L in the form,
SLðx; yÞ ¼
ðDL�jxjÞðDL�jyjÞ

D2
L

if jxj 6 DL and jyj 6 DL;

0 otherwise.

(
ð3Þ
Each particle is belonging to the finest oct including the particle, which means that it is only the oct that has a
direct connection to the particle without passing through the other octs. However, we solve Maxwell�s equa-
tions and the Poisson equation on every refinement level independently as described in Section 2.4, so that the
charge and current densities must be assigned onto every cell regardless of whether or not the oct including the
cell has a pointer to a particle. This assignment process using Eqs. (1) and (2) is very heavy and time consum-
ing. So we do not adopt this manner for all the cells. Alternatively this process is carried out only for the cells
belonging to the octs that have direct pointers to the particles locating in the cells, and the following operation
is conducted for the other cells,
AL
l;m ¼

1

16
f4ALþ1

2l;2m þ 2ðALþ1
2l�1;2m þ ALþ1

2l;2m�1 þ ALþ1
2lþ1;2m þ ALþ1

2l;2mþ1Þ

þ ðALþ1
2l�1;2m�1 þ ALþ1

2l�1;2mþ1 þ ALþ1
2lþ1;2m�1 þ ALþ1

2lþ1;2mþ1Þg; ð4Þ
where AL
l;m is a physical quantity (charge density and current density in the current case) at the spatial position

of (lDL,mDL) on the level L cells. The charge and current densities calculated by the use of Eq. (4) is found to
be identical to those derived by Eqs. (1) and (2), if they are known on the finer cells. This procedure is very fast
compared with Eqs. (1) and (2).

The electromagnetic fields at the positions of the level L particles are interpolated from the cell corners on
the refinement level L in order to calculate the forces that works on the particles. The interpolation is also
implemented by using the PIC algorithm:
ELðxsjÞ ¼
X

l

X
m

EL
l;mSLðxsj � X l;mÞ; ð5Þ

BLðxsjÞ ¼
X

l

X
m

BL
l;mSLðxsj � X l;mÞ; ð6Þ
where EL
l;m and BL

l;m are the electric and magnetic fields at the position of (lDL, mDL) on the refinement level L,
respectively.

2.4. Integration of the field equations

We use the complete set of Maxwell�s equations to derive the electromagnetic fields. The time advancements
of the electric field E and magnetic field B are described by Ampère�s law and Faraday�s law, respectively, that
is,
oE

ot
¼ c2r� B � 1

e0

j; ð7Þ

oB

ot
¼ �r� E; ð8Þ
where c is the velocity of light, and e0 is the dielectric constant in vacuum. The time differences of Eqs. (7) and
(8) are
Enþ1 � En

Dt
¼ c2r� ~B

nþ1=2 � 1

e0

jnþ1=2; ð9Þ

Bnþ1 � Bn

Dt
¼ �r� ~E

nþ1=2
; ð10Þ
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where
~E
nþ1=2 ¼ En þ Enþ1

2
; ð11Þ

~B
nþ1=2 ¼ Bn þ Bnþ1

2
. ð12Þ
Here, the superscripts denote the time levels.
The initial fields E0 and B0 are determined self-consistently with the spatial distributions of the initial charge

and current densities. To advance the field data, one eliminates Bn + 1 in Eq. (9) by the use of Eqs. (10)–(12),
and obtains,
1þ c2Dt2

4
r�r�

� �
Enþ1 ¼ 1� c2Dt2

4
r�r�

� �
En þ c2Dtr� Bn � Dt

e0

jnþ1=2. ð13Þ
The right-hand side consists of the known fields and currents, while the left-hand side has the elliptic oper-
ator. Since the boundaries of the refined regions can have an arbitrary shape in our algorithm, methods
to solve the equation are restricted and we choose the conjugate gradient method which is one of the
relaxation methods [26]. If En + 1 is obtained from Eq. (13), then Bn + 1 is calculated from Eqs. (10) and
(11).

However, the assignments of the charge and current densities by using Eqs. (1) and (2), or equivalently Eq.
(4), may violate the continuity equation,
oq
ot
þr � j ¼ 0. ð14Þ
If this equation is not satisfied, the straightforward integration of Eqs. (7) and (8) will lead to the evolution of
nonphysical fields that do not satisfy $ Æ E = q/e0. Thus we need to make a correction to ensure that $ Æ E = q/
e0 is maintained [22]. If E is a corrected electric field and E is that computed from Eq. (7), we assume
E ¼ E �rd/. Then d/ is calculated by solving the Poisson equation,
�r2d/ ¼ 1þ D2
L

6
r2

� �
q
e0

�r � E. ð15Þ
The first term of the right-hand side is worth noticing. The second term in the parentheses arises from the
truncation error of the second-order central differences of $ Æ E. r � E in the difference equation has the
truncation error within the second order in space (�oðD2

LÞ), while the replacement of $ Æ E = q/e0 has
no truncation so that no errors are included. This difference in truncation error can yield nonphysical elec-
trostatic field because the error can become the source in the Poisson equation. If the difference form of
$ Æ E in one-dimensional system is given by (Ex,i + 1 � Ex,i� 1)/2DL (the subscripts i + 1 and i � 1 denote the
positions of cell corners), this term is approximated in the following form in the spatial fourth-order
accuracy,
Ex;iþ1 � Ex;i�1

2DL
’ oEx

ox

����
i

þ D2
L

6

o3Ex

ox3

����
i

. ð16Þ
The second term of the right-hand side of the equation expresses the truncation error within the spatial second
order. We add this term explicitly. Since oEx/ox = q/e0 is exactly satisfied, the right-hand side of this equation
becomes the first term of the right-hand side of Eq. (15). In two- or three-dimensional system, Eq. (15) is also
satisfied within the second-order accuracy. The Poisson equation is solved by using the conjugate gradient
method again.

In our code, the electromagnetic fields are first calculated from Eqs. (13) and (10) on the base level (LB)
cells, because the boundary conditions at the edge of the simulation area are assumed to be given. The solu-
tions are interpolated onto the buffer cell corners on the next level cells as the boundary conditions as shown in
Fig. 3 [40]. The interpolations are simply performed in the linear form,
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Fig. 3. Interactions of the field data between the levels L and L + 1. The solutions on the level L cells are interpolated onto the buffer cell
corners on the level L + 1 cells as the boundary conditions. The electromagnetic fields solved on the level L + 1 cells are in turn projected
to the level L cells.
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ALþ1
2l;2m ¼ AL

l;m;

ALþ1
2lþ1;2m ¼

1

2
ðAL

l;m þ AL
lþ1;mÞ;

ALþ1
2l;2mþ1 ¼

1

2
ðAL

l;m þ AL
l;mþ1Þ;

ALþ1
2lþ1;2mþ1 ¼

1

4
ðAL

l;m þ AL
lþ1;m þ AL

l;mþ1 þ AL
lþ1;mþ1Þ.

ð17Þ
Then the electromagnetic fields are solved on this level (LB + 1) cells by the use of Eqs. (13) and (10). These
solutions are also interpolated to the buffer cell corners on the next level cells, and the procedure is recursively
carried out until the solutions on the dynamic range level (LD) cells are obtained. After then, the field data on
the LD cells are projected onto the LD � 1 cells, and the process are also recursively proceeded until the data
on the LB cells are replaced (see Fig. 3). The projections are performed by using Eq. (4) which is found to elim-
inate the aliasing. Finally, the Poisson solver described in Eq. (15) must be executed to maintain $ Æ E = q/e0 on
each level cells. The electromagnetic fields obtained by this procedure without recalculating under the corrected
boundary conditions, however, do not give proper solutions on each refinement level, because they are not
continuously differentiable at the boundaries of the refined regions [17,37]. Nevertheless, the test simulations
described in Section 3 indicate that numerical errors in association with the cell refinement are almost negligible,
so that we consider that the influence of the inconsistency in the field solutions between refined regions is not
significant. More accurate treatment of the elliptic equations will be examined in the future work.

2.5. Integration of the equations of motion

The initial particle distribution in velocity space is chosen to be Maxwellian or shifted-Maxwellian. The
Maxwell�s distribution is obtained using the Box–Muller method [26], in which particle velocities with a
thermal velocity vth are described in the form,
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v1 ¼ vth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
cos 2px2;

v2 ¼ vth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
sin 2px2;

ð18Þ
where x1 and x2 are the uniform random numbers. The velocities v1 and v2 are independent of each other.
The particle equations of motion to be integrated are
dvsj

dt
¼

qsj

msj
ðEðxsjÞ þ vsj � BðxsjÞÞ; ð19Þ

dxsj

dt
¼ vsj; ð20Þ
where msj is the mass of jth particle of species s. E and B must be those on the cells whose level is the same as
the particle level. The time differences of Eqs. (19) and (20) are
v
nþ1=2
sj � v

n�1=2
sj

Dt
¼

qsj

msj
Enðxn

sjÞ þ
v

nþ1=2
sj þ v

n�1=2
sj

2
� Bnðxn

sjÞ
 !

;

xnþ1
sj � xn

sj

Dt
¼ v

nþ1=2
sj .
Above equations represent a standard second-order leapfrog integration scheme. We use the Buneman–Boris
method to calculate v

nþ1=2
sj , in which the electric and magnetic forces are separately treated [6].

3. Test simulations

3.1. Landau damping of the Langmuir waves

Our code is firstly checked against the Landau damping of the Langmuir waves that propagate across the
refined regions. The initial setting of the Langmuir waves in the two-dimensional system is given as one-dimen-
sional plane waves with an appropriate dispersion relation, which are assumed to propagate in the x direction
(the horizontal direction in the simulation area) and to be uniform in the y direction. The boundaries of the
system are periodic in both x and y directions. The number of the base level cells is Nx · Ny = 64 · 64, unless
otherwise mentioned, which means LB = 6. In this and next subsections, we assume the number of refined lay-
ers is only one so that LD = 7 in order to avoid considerable numerical noise due to small number of particles
per cell in the case that we do not conduct the particle splitting for comparison. In the run including the AMR,
we initially subdivide the base level cells that satisfy the condition, jX j � lx=2j < 16DLB

, where Xj is the central
x-coordinate of the jth cell, and lx represents the horizontal size of the simulation area. The refined region is
assumed to be fixed to the base level region and not changed, even though a wave ridge moves from one place
to another as time goes on. Thus we have an interest only in whether the waves propagate properly across the
boundaries from the base region to the refined region and vice versa, and the hierarchical cells with the particle
splitting-coalescence algorithm are adequately applied to the conventional PIC codes. In the runs including the
AMR and particle splitting algorithms, the particles that are located in or enter the refined region can be split
into four particles, and the child particles can be carefully coalesced if they move outside the region. Other
initial parameters are set as mi/me = 104, Ti/Te = 1.0, xce/xpe = 1.0, and c/vth,e = 102, where ms and Ts repre-
sent the mass and temperature of species s, xce and xpe are the cyclotron frequency and plasma frequency of
electrons, respectively, and vth,e is the electron thermal velocity defined as vth;e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T e=me

p
. Adoption of an

unrealistic high mass ratio indicates that we have an interest only in the electron scale processes, but not those
of the ion scale. The size of the base level cells is set as DLB

¼ 1:0� 10�2ke, where ke is the electron inertial
length. The time step is chosen Dtxpe = 5.0 · 10�3 in the whole region. The initial number of particles is 64
per base level cell, so that the total number is approximately 2.6 · 105.

Fig. 4 shows the time evolutions of the field energy of the wave component Ex normalized by the initial
values. We have examined three cases of k ¼ 8DLB

, 12DLB
, and 16DLB

, where k is the wavelength. In the runs
of k ¼ 12DLB

, the number of cells in the base level is set as Nx · Ny = 96 · 64 that is compatible with the cyclic
boundary conditions in this case. Energy is averaged over the base level cells. The solid, dashed, and dotted
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K. Fujimoto, S. Machida / Journal of Computational Physics 214 (2006) 550–566 559
lines denote the runs without the AMR, with the AMR but not including the particle splitting, and including
both the AMR and particle splitting, respectively. The thick lines represent the theoretical profiles of the
growth rate described as c ¼ px2

pe=2n0kvðof0=ovÞv¼x=k, which is deduced from the linear analysis of the Landau
resonance. Here, n0 is the plasma number density averaged over the entire simulation area, k is the wavenum-
ber, x is the angular frequency, and f0 is the background part of the electron distribution function assumed to
be Maxwellian. We find that each simulation result provides a good fit to the theoretical profile at the stage of
the linear evolution. We also find that the results of �With AMR� and �With AMR and Particle splitting� runs
are in good agreement with �Without AMR� run for each wavelength. We can see a little discrepancy at the
nonlinear stage of the case k ¼ 8DLB

. This is thought to arise from the difference in noise distribution due
to thermal plasma and can be affected by the short wave reflections at the boundaries of the refined region.
However, the discrepancy is not essential because physical phenomena we try to understand using PIC codes
should have much larger amplitudes compared with the noise level. The effects of the wave reflections at the
boundaries are described in detail in the next subsection.

3.2. Wave reflections at the boundaries of the refined regions

One of the issues when we combine the PIC and AMR techniques is wave reflections at the boundaries sur-
rounding the refined regions. Wave dispersion relations in the framework using finite-sized particles are dif-
ferent from those in the system using the actual point particles, and dependent on the cloud sizes, that is,
the grid spacings in our code [6]. Thus if a wave in a coarse cell region propagates into a refined region or vice
versa, the inconsistency in the wave dispersions between the hierarchical cell layers can cause wave reflections
at the boundary. In order to check whether the reflections are significant, we test again the Langmuir waves
that propagate across the boundaries. The initial settings of the hierarchical cells and plasma condition are the
same as those in the previous subsection. In order to avoid wave damping due to the Landau resonance, we
examine the relatively long wavelength, k ¼ 32DLB

, of which the phase velocity is much larger than the electron
thermal velocity, so that the resonance between the Langmuir waves and background electrons is very weak.

In Fig. 5(a), the wave spectral density of Ex in the x–k space is shown for the run including the AMR and
particle splitting processes. Strong peak that arises at ðk;xÞ ’ ð20k�1

e ;xpeÞ represents the normal Langmuir
wave initially loaded. If the wave reflects at the boundaries of the refined region, the reflected wave should
have strong peak at ðk;xÞ ’ ð�20k�1

e ;xpeÞ. However, such a peak is not shown in Fig. 5(a). The difference
in wave spectral density between the �With AMR and Particle splitting� and �Without AMR� runs is described
in Fig. 5(b). This difference is thought to represent any wave modulation caused by the presence of the refined
cells. However, the scale of color contour in Fig. 5(b) is two order smaller than that in Fig. 5(a), which
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indicates that the modulations including the wave reflections at the boundaries are very small, if any, com-
pared with the source wave amplitude and can be masked by the thermal fluctuations.

3.3. Nonlinear evolution of the plasma sheet

In this subsection, we show the electron dynamics that evolves nonlinearly from the initial plasma sheet. We
use the Harris-type current sheet [14] as an initial condition, which is given as Bx(z) = �B0 tanh(z/k), where k is
the half width of the initial plasma sheet. We set as k = 0.5ki0, where ki0 is the ion inertial length defined by the
initial plasma sheet density, nps. In addition to the equilibrium, we put a small perturbation of the form,
Bxpðx; zÞ ¼ �2d=k cosð2px=lxÞ sech2ðz=kÞ tanhðz=kÞ;
Bzpðx; zÞ ¼ 2pd=lx sinð2px=lxÞ sech2ðz=kÞ;

ð21Þ
where d is given as d = 0.03B0ki0 in the current case, so that the initial value of the reconnected magnetic field
defined by w �

R lx

0 jBzðx; z ¼ 0Þjdx is only 0.12B0ki0, where lx is the system size in the x direction. Furthermore,
we add the background plasma such as nb = nb0 tanh2(z/k) in order to describe the lobe plasma in the Earth
magnetotail. Here, nb0 is the asymptotic lobe density and nb0 = 0.044nps is loaded in the current runs. We do
not give any perturbation in the initial current density consistent with the initial field perturbation. However,
once the simulation starts, the initial current profile is quickly modified to adjust the field perturbation. As a
result, a thinner current sheet is formed around the center of the simulation area, so that the tearing instability
selectively develops therein. The system size is lx · lz = 15.4ki0 · 15.4ki0, we assume the periodic boundary in
the x direction and the conducting wall in the z direction, that is, the normal component of the electric field
(Ez) and the tangential components of the magnetic field (Bx,By) has no gradients and the charge and current
densities are vanished at the z boundaries. The initial plasma condition is mi/me = 100, Ti,ps/Te,ps = 8.0, Ti,lobe/
Te,lobe = 1.0, Te,lobe/Te, ps = 1.0, and c/vth,e = 5.0, where Ts,ps and Ts,lobe are the temperatures of the species s at
the central plasma sheet and the lobe region, respectively. Time step is Dtxci = 8.0 · 10�4 for all particles and
refined regions in order to satisfy the Courant condition on the level LD cells, where xci = eB0/mi is the ion
cyclotron frequency in the asymptotic lobe region. The cell shape is assumed to be square in the current runs.

We examine three runs for comparison: �Without AMR�, �With AMR�, and �With AMR and Particle split-
ting� runs. Table 1 shows information on these three runs, showing whether the AMR or particle splitting
algorithms are used, the base level (LB), the dynamic range level (LD), the number of cells, and the number
of particles. In the �Without AMR� run, the whole simulation area is initially covered only by the fine cells
with level L = 10 and the number of particles is large enough to suppress the numerical noise even in the fine
cells. The numbers of cells and particles are not changed during the run, so that we assume results of the �With-
out AMR� run are identical with those in conventional PIC simulations. In the �With AMR� run, the AMR
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processes are included but the particle splitting is not implemented. Thus the number of cells is greatly reduced
according to the refinement condition described later, but the number of particles is the same as the �Without
AMR� run. Finally, the �With AMR and Particle splitting� run includes both the AMR and particle splitting
processes, so that the numbers of cells and particles are reduced and changed dynamically in association with
the evolution of the plasma sheet. The refinement condition is defined by three physical values. The first is the
local electron Debye length, kDe ¼ vth;e=

ffiffiffi
2
p

xpe, which is required to avoid a numerical heating of local plasma,
where xpe is the electron plasma frequency. We use the initial value of vth,e for calculation of kDe, because elec-
trons are expected to be heated in the region where the electron dynamics is important, that is, we use the min-
imum value of kDe. The second is the out-of-plane electron flow velocity (Vey), because the inertial term in the
generalized Ohm�s law gets dominant in the region where the electron flow is strong, so that the dissipation of
the magnetic field becomes strong and higher resolution is required. The third is the in-plane electron current

density (jexz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

ex þ j2
ez

q
), which is required because strong currents can excite microinstabilities so that high

resolution is needed (e.g. [10]). In each time step, if kDe, Vey, and jexz calculated at the center of a cell satisfy the
condition, DL P 2.0kDe or Vey > 2.0VA or jexz > 0.5enpsVA, the cell is subdivided and four child cells are pro-
duced, otherwise, the child cells are removed if any. Here, V A ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0npsmi
p

is the Alfvén velocity, and l0 is
the magnetic permeability in vacuum. The process begins from the base level cells and proceed up to the level
LD � 1 cells. However, for the level LD � 1 cells we do not impose the criterion on kDe in order to avoid mak-
ing the level LD cell region patchy. The particle splitting is performed only for the background particles with
level except for LD in the present runs. The particle coalescence algorithm is also implemented for the back-
ground particles once in a few hundred time steps, but we never choose particles in the level LD cells to avoid
the numerical errors in physically important regions.

Time evolutions of the reconnected magnetic flux w are shown in Fig. 6 for the three runs: the �Without
AMR� (black solid line), �With AMR� (black dashed line), and �With AMR and Particle splitting� (black dotted
line) runs. We found that, although the runs with the AMR require slightly more time before the onsets of fast
reconnection occur, each run has the almost identical gradient so the same reconnection rate after the onset.
Furthermore, the saturation levels for the runs with the AMR are clearly in agreement with that for the �With-
out AMR� run. Thus we can say that the fast reconnection processes described in the three runs are physically
identical, so that the adaptation of the AMR and particle splitting algorithms to the conventional PIC codes is
successful. We think that the discrepancy of the onset time is caused by the difference in the noise level around
the central current sheet at the initial stage in each run. Actually the initial cell size around the central current
sheet in the runs with the AMR is twice of that in the �Without AMR� run, because we do not impose the
criterion on kDe for the level LD � 1 cells. Thus the number of particles per cell is increased four times in
the former, which indicates that the initial noise level around the central current sheet is lower in the runs with
the AMR. In order to make sure whether this reasoning is correct or not, we also examined a simulation which
imposes the refinement criterion on kDe for the level LD � 1 cells. In this case, the criterion on kDe is given as
DL P 1.4kDe, instead of DL P 2.0kDe, only for the level L = LD � 1 cells to avoid the patchy refined regions
with level LD. The results for two cases are shown in Fig. 6. One describes the run using only the AMR tech-
nique (red dashed line) and the other shows that using the AMR and particle splitting techniques (red dotted
line). It is found that these two runs are in good agreement with the run without the AMR, which indicates
that the initial noise level around the central plasma sheet is very crucial to determine the time when the onsets
of magnetic reconnection occur. Indeed, it is very difficult to discuss the time scale in which magnetic recon-
nection grows from noise to a significant size, because it is strongly dependent not only on the initial noise level
but also on many other conditions specific to the system (e.g. [30]). Thus we do not treat such a problem in this
Table 1
Simulation information

Run AMR Particle splitting LB LD Total number of cells Total number of particles

Without AMR No No 10 10 1.0 · 106 2.2 · 107

With AMR Yes No 7 10 8.4 · 104a 2.2 · 107

With AMR and Particle splitting Yes Yes 7 10 9.1 · 104a 4.8 · 106a

a Averaged value over the run.
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paper. We only compare the description of fast reconnection, which allows us to start simulations with coarser
cells around the central plasma sheet.

Efficiency of our code is measured by the elapsed time to complete each run, which is presented in Fig. 7.
Our code including both the AMR and particle splitting algorithms is shown clearly to be very efficient com-
pared with the conventional PIC code without the AMR. This efficiency is achieved by reducing the numbers
of cells and particles greatly (see Table 1).
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Fig. 8 shows the evolution of the out-of-plane current density (Jy) for the run including the AMR and par-
ticle splitting algorithms. A strong thin current sheet is formed in the vicinity of the X-line (txci = 14.72) and
then fast reconnection occurs (see Fig. 6). After the initially loaded plasma in the current sheet is carried away
from the central region, the background lobe plasma enters the diffusion region and quasi-steady electron dif-
fusion region is produced (txci = 17.92, 20.48). In the electron diffusion region, electrons are unmagnetized
from the ambient magnetic field, and conduct the meandering motions with acceleration due to the out-of-plane
electric field, which generate a double-peaked current sheet therein as clearly shown in the figure. Similar
properties are described also in other full particle simulations on magnetic reconnection (e.g. [16,28,29]).
The hierarchical cell distributions in association with the current sheet evolution are shown in the right-hand
column of Fig. 8. We find that the finest cells are only distributed around the diffusion region, separatrices
extending from the X-line, and plasmoid, where the electron kinetic effects are expected to be important.

Fig. 9 displays the profiles of (a) the number density of electrons (ne), (b) the out-of-plane current density
(Jy), (c) the inflow electron velocity (Vez) and E · B drift velocity (dashed line), and (d) the out-of-plane electric
field (Ey), along the x/ki0 = 7.9 axis at the time txci = 17.92 for the run including the AMR and particle
splitting algorithms. The electron diffusion region can be defined as an area where the electron bulk velocity
is inconsistent with the local E · B drift velocity. Thus the area from z/ki0 = �0.34 to 0.34 is the electron
Fig. 8. Example of the evolution of the hierarchical cell distribution associated with the current sheet evolution for the run with the AMR
and particle splitting processes. Magnetic field and current density (color-coded) evolutions are shown in the left-hand column and the
hierarchical cells at the times corresponding to them are described in the right-hand column. Finest cells are only distributed around the
diffusion region, the separatrices extending from the X-line, and the plasmoid, where the electron kinetic effects are expected to be
important.
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diffusion region in this case. The double-peaked profiles of ne and Jy inside the electron diffusion region are
also shown in Figs. 9(a) and (b). The peak separation is estimated at 0.3ki0, which is approximately same
as the electron inertial length defined by the electron number density averaged within the electron diffusion
region, ne/nps . 0.071. Shay et al. [29] have constructed a model around the electron diffusion region, in which
vez at the edge of the electron diffusion region and Ey within the region are given by vez � Bd/l0enel and
Ey � �B2

d=l0enel, respectively, where Bd is the x component of the magnetic field at the edge of the electron
diffusion region and l is the length of the region along the x axis. When we estimate l, we assume that electrons
continue to be accelerated along x in the electron diffusion region, so that the electron bulk velocity Vex should
be maximized at the edge of the region. In the current case, Bd/B0 . 0.29 and l/ki0 . 2.0 are estimated from
our simulation results, so that vez/VA . 2.1 and Ey/VAB0 . �0.61 are derived, which are approximately
consistent with our results described in Figs. 9(c) and (d). Thus the electron dynamics described in the run
including the AMR and particle splitting algorithms is in good agreement with the conventional model.

4. Summary and conclusions

We have described a new electromagnetic full particle code with the AMR and particle splitting algorithms.
The AMR technique subdivides and removes cells dynamically in accordance with the refinement criteria and
enhances the spatial resolution. On the other hand, the particle splitting algorithm divides particles that locate
in finer cells, conserving the ratio of mass to charge, the total momentum, energy, and distribution function of
particles, and the moments on grids. The particle splitting is indispensable for adapting the AMR to the electro-
magnetic particle codes, because the numerical noise increases on the subdivided cells due to the decrease in the
number of particles per cell, especially around the X-line formed in association with magnetic reconnection [11].

We conduct several test simulations and compare three runs without the AMR, with the AMR, and with
the AMR and particle splitting. Test simulations on the propagation of the Langmuir waves indicate that the
AMR and particle splitting algorithms are successfully applied to the conventional PIC codes, and we have
found that the wave reflections at the boundaries of the refined regions are not essential. The nonlinear evo-
lution of the Harris-type current sheet and the electron dynamics around the X-line using our AMR code are
basically the same as those in other reconnection simulations. However, the numbers of cells and particles are
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greatly reduced in the run including the AMR and particle splitting algorithms, so that the time to complete
the simulation is considerably shortened. Thus we conclude that we have realized effectively high-resolution
simulations on the evolution of the current sheet by the use of the AMR technique and particle splitting algo-
rithm. Our code enables us to conduct large-scale particle simulations on magnetic reconnection in a wide
range of the order 104–105.

Our next challenge is a massively parallel computation for the AMR code using several computational
nodes. Our code at the current version is parallelized only within a node of shared memory processors using
OpenMP. It is worth mentioning that the accumulation of the charge and current densities onto each cell cor-
ner is parallelized by preparing temporal lists of charge and current densities for each processor. In other
words, each processor has private lists of charge and current densities, and assigns particle to the lists inde-
pendently of the other processors. After a sweep of the particle loop, the charge and current densities assigned
to each processor are summed up, respectively, and substituted into the shared lists. This procedure is effec-
tively parallelized at the expense of the computational memory. Difficulties in parallelizing our code arise
mainly from the Poisson solver to calculate d/ by Eq. (15). The relaxation methods as used in the code are
not adequate to a parallel computing. This is conceptually because a global distribution of the source field
contributes to each local potential, and technically because the iteration loop repeated until the residual error
becomes small enough must be carried out sequentially. In order to avoid solving the Poisson equation, we can
use the charge conservation method for example, in which the current density is determined directly from
knowledge of charge motion so as to satisfy the charge continuity equation (e.g. [38]). The improved version
of our code will be discussed in a separate article.
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